UCRL- 92360 Rey. 1
PREPRINT R

CIRCULATION COPY
SUBJECT TO RECALL
NOTWO WEEKS

FAST MOVING AVERAGE RECURSIVE
LEAST MEAN SQUARE FIT

Lawrence C. Ng
Robert A. LaTourette

This paper was prepared for submittal to
IEEE 24th Conference on
Decision and Control
December 11-13, 1985

August 27, 1985_

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California sor any of thelr employees, makes any warranty, express or implied, or
assumes auy legal liability or responsibility for the accuracy, completenesa, or useful-
ness of any information, apparatws, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific
commercial products, process. or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of Californis. The
views and opinions of authors expressed herein do not neceasarily state or reflect
those of the United States Government or the University of California, and shall not
be wsed for advertising or product endorsement purposes.

-—

FAST MOVING AVERAGE RECURSIVE LEAST MEAN SQUARE FIT *

Lawrence C. Ng {

Lawrence Livermore National Laboratory
University of California
P. O. Box 808, L-228
Livermore, California 94550

Robert A. LaTourette

Code 3213
Naval Underwater Systems Center
New London, Connecticut 08320

Abstract

A new approach is developed to reduce the computatsonal complezity of a moving
average Least Mean Square Fit {LMSF) procedure. For a long data window, a tra-
ditional batch approach would result in a large number of multiplication and add
operations (i.c., an order N, where N is the window ler,lgzl:j This study shows
that the movmg average batch LMSF procedure could be ¢ equivalent to a re-
cursive process with identical filter memory length but at an order of reduction tn
computational load. The increase in speed due to reduced computation make the
moving average LMSF procedure competitive for many real time processing appli-
cations. Finally, this paper also address the numerseal accuracy and stability of the

algorithm.

* Work performed under the anspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract number W-7405-ENG-48.
t Formerly with the Naval Underwater Systems Center, New London, CT 06320

Introduction

In processing a long stream of digital data, a polynomial moving average Least Mean
Square Fit (LMSF) is often used to provide smoothing or filtering of the noisy component
imbedded in the data [1]. The LMSF has a finite duration memory which is determined

by the length of the moving window.

There are several advantages in using a moving average polynomial LMSF [2]. First
and foremost is that LMSF provides a stable operation since the polynomial coefficients
are obtained from a bank of Finite Impulse Response (FIR) filters operating on the data
sequence. Secondly, the finite memory window assures us that bad data points lie outside
the window will have no effect on the resulting LMSF estimates.

On the other hand, there are also a number of disadvantages in the moving average
LMSF application. First is that the sizable amount of memory storage required for data
lie within the operating window. Second is the apparent large computational requirement
in comparison to the recursive implementation using Infinite Impulse Response filters [3].
The study presented here shows that while the size of storage requirement is unchanged, the
computational load can be reduced significantly via an equivalent recursive formulation.

Methoiiology

Let Z, denote a vector containing N consecutive data points from a measurement
sequence, A, denote a vector containing the coefficients from an M** order polynomial,
and H be the N x (M + 1) dimensional matrix that relates A, to Z,. Then the LMSF
solution of A, is weil known and is given by:

A, = (15!71'1')'1 HTZ, . (1)
This can also be written as |
Au = (HTH) - X , (2)
where
X, =HTZ, . (3)

Note the subtle difference between Egs. (1) and (2). First, Z, is an N dimensional
vector. For all practical purposes, N, the number of data points, is much larger than
M, the order of the LMSF. Second, the matrix (HY H)~'H” in Eq. (1) is (M +1) x N
dimension, and the matrix (H7 H)~! in Eq. (2) is (M + 1) x (M + 1) dimension. Thus
assuming that Z, and X, are known, then computing A, via Eq. (2) will result in savings
by a reduction factor of (M + 1)(4)N of the number of multiplications and adds. For example,
given a typical value of N = and M = 4, we have (M + 1)/N = .06. This is indeed a
significant reduction in computation. Of course, the factor + 1)/N is the ideal lower
bound since additional computations are required to obtain X, from Z,. If X, was obtain

from Z, directly using Eq. (3), then no reduction in computation is gained. Thus, it is
desired to obtain an efficient computation of X, from Z,. Consequently, we will obtain
an efficient algorithm to calculate A, for each moving window of length N. This has been
accomplished using a recursive formulation [4]. The derivations are summarized as follows:

The vector X, is (M + 1) dimension. Therefore the m** component of X, is :

N
z,.(m)=2t;"'lz,- : m=1,2,_...,M+1. (4)

=1
We want to develop a recursion for za(m) for n = 1,2,.... For m = 1 and 2, the

recursions are identical with the linear least square fit case and can be shown easily given
by the relations:

Zn(1) = Zu-1(1) + (2 — 2a-N) - (5)
 Za(2) = Za1(2) + NAHZm —za())/N) , . (6
where At is the sampling interval, zo(1) = 30(2) =0, and z,_ny = 0 for n < N. For the

general case (ie, m > 2), the recursion can be obtained as follows:

Taking the difference between zy.4(m) and Tn4¢-1(m) yields

N N
ZN+e(m) — znpea(m) = D P Mmp~ D 0 g0y

=1 : =1 .
7
N-1 > ()
= E (™ D7) zive + tNENse
=1

since ¢, = (r — 1)At, ¢; = 0. Using the Binomial expansion on the coefficient of z;,, and
letting »n = N + £, Eq.(7) can be simplified to yield the desired recursion

2a(m) = Za-1(m) + om (2 = Sa(m) , (®)
where ?
s (m)=-L S~ gm-1, (; .
fn(m) = — E Bl tem(i+1) ()
O = mi At YN -1y Cpt (10)
=0
it =atmicp (11)

and CT* is the binomial coefficient given by

: m!

Note that for n = 0, zo(m) = 0 for all m.

Eqs.(5), (6) and (8) describe the recursion for computing X, given X,_;. Note that in
Eq.(8) the coefficients am and A can be pre-computed and tabulated. Note also that in
order to compute z,(m), one must first compute the order updates z,(1), z,(2) ..., Zs(m—
1) sequentially.

Speed Comparison

Both the batch and the recursive approaches were implemented on a VAX-11/780
machine. Using a number of different length windows, both approaches were used to
process over 10,000 data points with the resulting CPU times carefully recorded. One can
define the ratio of the recursive CPU time to the batch CPU time as the speed reduction
ratio or speed ratio (SR) for short. Figure 1 shows a typical SR result. Also shown
in Figure 1 is the lower bound, which was theorectically calculated and is given by the

formula [4]:

L,=(-f’f: +—%)/(M+1)N , (13)

where T, and T, are the machine cycle time required for a single add and multiply re-
spectively. NyandN,, are the number of additions and multiplications respectively for the
recursive approach and are given by the following exact expressions:

4 (M+1);3M+2) ’

_(M+1)(3M+4) _ 1 . (15)

(14)

N¢=

and

Nm 2

Close study of Figure 1 shows that the actual SRs fall off as a function of window
length at a rate similar to the lower bound. The significant difference between the actual
SR and the lower bound is due to programming overhead cost; s.e., CPU time expended for
non-arithmetic operations. With more efficient programming, this difference is expected
to reduce. At any rate, Figure 1 shows that.for a window length of 200 data points, the
recursive CPU time is only 20 percent of the batch CPU time. The corresponding number
for the lower bound, however, is only 4 percent. On the other hand, for a small data
window, say N < 10, the differences between the two approaches become insignificant.

SPEED RATIO(X)
$

$ 8 3
a
“ J
1
o -
é K
‘ TEY CRUTE FRUTI EVRTI IV

: o
“‘ . 1“. - 1". .
WINDOQW{(SEC.)

- llﬂ[lll]'llnllllllllﬂ

Figure 1. Speed reduction ratio versus window length

Numerical Considerations

Although the LM S F recursions as given in Eq.(S) are extremely éﬂcient, if could lead
to numerical instability if care was not taken in its actual implementation. Here, we briefly
address its numerical considerations. Without loss of generality, we assume At = 1, and

rewrite Eq.(8) as :

za(m) = [5'"_: (-1 'CP za-1(m +1 - 1')] (19

i=1

[-%] + [-1ens]

Now the numerical aspect can be examined. The first term represents integer multfiples
of the previous order update. The second term is the incorporation of the current data
point (2,). The third term indicates the removal of the eldest data point (2,—x) in the
sliding window. Numerical problems are encountered when 2, added in the second term
is not precisely removed N time updates later by the third term. These errors (caused
by computer roundoff) will accumulate and lea.g to numerical instability. Experiments
have indicated that the problem is somewhat minor for coefficients z,(1) and z,(2) but
becomes significant for higher order coefficients. The aforementioned numerical problem
can be overcome by adopting the following approach in representing: (1)all input data in
single precision, (2) multiplicative coefficients in integer and (3) accumulation variables in
double precision. In essence this idea assumes that a finite sum of products of integers and
a single precision variable will not utilize all the bits of a double precision word.Thus there

will never be any computer roundoff error and hence will precisely remove the current
input N time updates later.)

Summary and Conclusions

This study developed an efficient recursive algorithm to implement a moving average

Least Mean Square Fit (LMSF) procedure. The followmg briefly summarizes the significant
findings of this study. :

1.

A recursive formulation of a moving average LMSF can be implemented with a
theorectical ratio in computation reduction (recursive over batch) of (3M +4)/2N,
where M is the order of the LMSF and N is the window length. _

Ignonng the potential singular value inversion and other numerical problems, re-
cursive moving average LMSF gives outputs identical to the batch LMSF when the
data window is filled. However, prior to attaining the full data window, the recur-
sive'approach has the additional advantage that it could also provide mea.nmgfu.l
outputs if good a priori information is used to initiate the recursion.

We have shown the speed advantage of the recursive approach. We have also exam-
ined the numerical aspect of the problem, identified potential pitfalls, and offered

possible solution.

The significant reduction in computational load for the moving average LMSF makes
it competitive for many real time processing applications.

References

L.C. Ng and R.A. LaTourette, “Equivalent Bandwidth of a General Class of Polynomial
Smoothers,” J. Acoust. Soe. Am. 74(3), September 1983. Also NUSC Technical

Report TR 6601, dtd. 19 July 1982.

N. Morrison, Introduction to Sequentzal Smoothing and Prediction, McGraw-Hill Book
Company, 1969.

?ncA Bowen and W.R. Brown, Signal Processing and Signal Processors, Prentice-Hall,
1982,

L.C. Ng and P.R. Lambertl “Fast Moving Average Recursive Least Mean Sqﬁa.re
Fit,” Naval Underwater Syst 8 Center, Technical Memorandum TM 841143, dtd.

30 September 1984,

